Bar 1-Visibility Graphs and their relation to other Nearly Planar Graphs
نویسندگان
چکیده
A graph is called a strong ( resp. weak) bar 1-visibility graph if its vertices can be represented as horizontal segments (bars) in the plane so that its edges are all (resp. a subset of) the pairs of vertices whose bars have a -thick vertical line connecting them that intersects at most one other bar. We explore the relation among weak (resp. strong) bar 1-visibility graphs and other nearly planar graph classes. In particular, we study their relation to 1-planar graphs, which have a drawing with at most one crossing per edge; quasi-planar graphs, which have a drawing with no three mutually crossing edges; the squares of planar 1-flow networks, which are upward digraphs with inor out-degree at most one. Our main results are that 1-planar graphs and the (undirected) squares of planar 1-flow networks are weak bar 1-visibility graphs and that these are quasi-planar graphs.
منابع مشابه
Bar k-Visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness
Let S be a set of horizontal line segments, or bars, in the plane. We say that G is a bar visibility graph, and S its bar visibility representation, if there exists a one-to-one correspondence between vertices of G and bars in S, such that there is an edge between two vertices in G if and only if there exists an unobstructed vertical line of sight between their corresponding bars. If bars are a...
متن کاملBar 1-Visibility Drawings of 1-Planar Graphs
A bar 1-visibility drawing of a graph G is a drawing of G where each vertex is drawn as a horizontal line segment called a bar, each edge is drawn as a vertical line segment where the vertical line segment representing an edge must connect the horizontal line segments representing the end vertices and a vertical line segment corresponding to an edge intersects at most one bar which is not an en...
متن کاملBar k-Visibility Graphs
Let S be a set of horizontal line segments, or bars, in the plane. We say that G is a bar visibility graph, and S its bar visibility representation, if there exists a one-to-one correspondence between vertices of G and bars in S, such that there is an edge between two vertices in G if and only if there exists an unobstructed vertical line of sight between their corresponding bars. If bars are a...
متن کاملOn Aligned Bar 1-Visibility Graphs
A graph is called a bar 1-visibility graph if its vertices can be represented as horizontal segments, called bars, and each edge corresponds to a vertical line of sight which can traverse another bar. If all bars are aligned at one side, then the graph is an aligned bar 1-visibility graph, AB1V graph for short. We consider AB1V graphs from different angles. First, we study combinatorial propert...
متن کاملPath-Additions of Graphs
Path-addition is an operation that takes a graph and adds an internally vertex-disjoint path between two vertices together with a set of supplementary edges. Path-additions are just the opposite of taking minors. We show that some classes of graphs are closed under path-addition, including non-planar, right angle crossing, fan-crossing free, quasi-planar, (aligned) bar 1-visibility, and interva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.5520 شماره
صفحات -
تاریخ انتشار 2013